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This is the first of a series of papers which develops the theory of superstructures of block copolymers, 
taking into account the polydispersity of their components. In this paper, the mean-field theory describing 
the detailed structure and properties of planar grafted layers, formed by chains of two molecular weights, 
is developed. Several conclusions are drawn on the structure and properties of grafted layers with arbitrary 
character of polydispersity of molecular weight. 
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INTRODUCTION 

Di- and triblock copolymers are known to form super- 
crystalline structures with different morphologies ~'2. A 
surprising property of these structures is the fact that 
their formation does not require high degrees of mono- 
dispersity of copolymers. Moreover, the formation of 
regular structures in binary mixtures of block copolymers 
with different molecular weights and compositions is 
observed experimentally 3. The aim of this and subsequent 
papers is to develop the theory of superstructures of block 
copolymers taking into account the polydispersity of their 
components. 

In a previous series of investigations 4-1°, the theory 
of well defined superstructures of monodisperse block 
copolymers with the same molecular weight and compo- 
sition of all molecules has been developed. The initial 
point of the theory was the concept of a narrow interphase 
layer, the thickness of which is much smaller than the 
characteristic dimensions of the elements of the super- 
structure (lamellae thickness or the dimensions of the 
domains and interdomain layers) and is independent of 
the molecular weight of the copolymer components. In 
this case, which corresponds to the condition of strong 
segregation of block copolymer components, the theory 
of grafted polymer layers becomes a part of the theory of 
block copolymer superstructures. This theory of grafted 
polymer layers considers the conformations and thermo- 
dynamic properties of chains grafted onto an impermeable 
matrix of a fixed geometry. This impermeable matrix is 
formed by the interphase surface, its geometry is deter- 
mined by the morphology of the superstructure, and 
different blocks are represented as chains 'grafted' onto 
this surface. The theory of grafted polymer chains also 
became an indispensable part of the theory of solutions 
of regularly branched polymers t~-~4, the theory of 

stabilization of colloid dispersions by polymers 15, etc. 
In recent years, considerable progress has been attained 

in the theoretical investigations of grafted polymer layers 
with different morphologies (geometries). The scaling 
consideration made it possible to establish the main 
power laws relating the characteristics of the layer to 
molecular parameters 16-19. For planar layers (corre- 
sponding to lamellar mesophase), the naive scaling 
consideration does not make it possible to analyse the 
inner structure of the layer, which was first investi- 
gated on the basis of computer simulation 2°'21 and the 
sublayer approximation 22 and subsequently on the basis 
of the mean-field theory developed by two groups of 
researchers 23-29. This theory provided analytical expres- 
sions for the non-power distribution functions of free 
chain ends, the degree of chain stretching and their local 
ordering, the density profile of polymer units, both under 
the conditions of an athermal s o l v e n t  24'26'27 and over a 
wide temperature range including the O-point 2a'24. 

The transition to polydisperse block copolymer systems 
requires the development of the theory of grafted layers 
of polydisperse macromolecules. The influence of chain 
polydispersity on layer characteristics evidently proceeds 
via the effect on the inner structure of the layer. Hence, 
developing in this paper the theory of planar layers, we 
will base it on the methods and results described in ref. 24. 

As an example of a layer of polydisperse chains, a layer 
formed by a mixture of grafted chains with degrees of 
polymerization N1 and N 2 will be considered (Figure 1). 
Note that a similar problem has been considered in ref. 
28. In the present paper, the range of conditions will be 
extended as compared to those in ref. 28 (in particular, 
the temperature range near the O-point was investigated, 
and layer deformation was considered). Hence, it will be 
possible to carry out a more complete analysis of the 
results and to draw several general conclusions. 
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Supermolecular structures of polydisperse block copolymers. 1: T. M. Birshtein et al. 

Figure 1 Planar layer of bidisperse chains 
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A planar layer of chains grafted at one end onto a planar 
impermeable surface and immersed into a solvent at 
temperature T will be considered. Let the degrees of 
polymerization be equal to N 1 and N 2 > N  1 >> 1 and let 
tr be the mean grafting area per chain. As before, a 
symmetrical chain element of length equal to chain 
thickness a will be chosen as a unit. Let p = A/a/> 1 be 
the number of units in a stiff (Kuhn) chain segment, ql 
and q2 = 1 - q l  be the fractions of short and long chains 
in a layer and ~=(N2-N1)/NI>O be the relative 
difference between chain lengths. 

Let us consider different variants of structures of planar 
layers of bidisperse grafted chains: 

(1) A free layer immersed in a good (~ = ( T -  O)/O - 1) 
or O (~ = 0) solvent. 

(2) A layer with a constant volume concentration of 
units ~0 =cons t  throughout the entire layer thickness. 
A layer containing no solvent, ~0 = 1, is a particular case. 

(3) A deformed layer, i.e. a layer immersed into a good 
or a Q-solvent and compressed by a plane parallel to the 
grafting plane. 

In all cases it will be assumed that the condition of 
side overlapping of grafted chains ensuring their stretching 
to size ~ N in the direction normal to the grafting plane 
is obeyed. The normal direction is singled out so that 
the problem is, in fact, one-dimensional, and the natural 
coordinate in the direction of the normal x will be counted 
from the grafting plane. 

The following values are of interest as layer 
characteristics: 

(a) gl(x') and g2(x') are the partial distribution 
functions of chain ends along the layer height. 

(b) El(x, x') and E2(x, x') are the partial functions of 
local stretching at a height x of the chain ending at the 
point x'. 

(c) ~ol (x), ~o2(x) and tp(x) = ~l  (x) + (~2(X) are  the partial 
and complete volume concentrations of units at a point 
x (in the case of a dense layer ~p(x)=const). 

(d) H 1 and Hz are the limiting distances of the free 
ends of short and long chains from the grafting plane 
(H 1 is the height of short chain layer and H 2 is the 
complete height of the layer). In the case of a compressed 
layer, H2 is the predetermined parameter. 

THEORY 

As already mentioned, grafted layers will be considered 
under the conditions of stretching of all chains. The elastic 
free energy of stretching determines to a considerable 
extent the complete free energy of the system. Hence, 
under equilibrium conditions, the chains tend to minimize 
their stretching. A natural consequence of this require- 
ment in the system under consideration is the condition 
of non-overlapping of distribution functions of ends of 
short, gl(x'), and long, g2(x'), chains. The former should 
differ from zero only in the layer part adjoining the 
grafting plane, 0 < x ' < H  I, and the latter should differ 
from zero in the more distant peripheral part of the layer, 
HI<x'<H2:gl(x ' )=0 at x'>H1 and g2(X')=0 at 
x ' <  H 1. The value of HI,  the height of the layer of short 
chains, should be determined. Note that the effect of the 
segregation of ends of grafted chains of different lengths 
is completely equivalent to that of the segregation of the 
opposite layers of grafted chains (see refs. 10 and 23 for 
further details). This problem will be discussed below in 
the 'Discussion' section. 

According to ref. 24, the free energy per unit area, a 2, 
is given by: 

AF = AFel,1 + AFel.2 + AFcon~ (1) 

where 

;o ;o 3 91(x')dx x' AF, I,1 = ~  El(x, x') dx (2) 

AFol,2--3 f.~2g2(x')dX f Xo "E2(x,x')dx (3) 

are the entropy contributions of elastic chain stretching 
and AFoon~ is the contribution of volume interactions 
between the units depending on their volume concen- 
tration in the layer ~p(x) = ~o 1 (x) + ~p2 (x) where: 

a 3 ~ '  gl(x')dx' 
t p l (x )=- -  x <H 1 (4) 

a J~ E~(x,x') 

a 3 fm '2 g2(X') dx'  x<>H 1 (5) ~2(x) = - -  e2(x, x') (7 ax(x,HD 

and 

fo ~' dx'=ql (6) gl(x ' )  

fH 2 g 2 ( X ' )  = q2 dx' (7) 
1 

Here and below all energy values are expressed in kT 
units. When the concentrations in the layer are not very 
high, q~(x)<<l, the density of free energy of volume 
interactions f(x)a-a may be represented in the form of 
a virial expansion f(x)~vq~2(x)+ wq~a(x)+-. . ,  which 
gives for AFco.o under the conditions of a good (v>>wq~) 
and a Q-solvent (v<<wtp): 

AFco.c 1 fo,,f( = x) dx 
a 

o vq~2(x) dx r>>® (8a) 

I" '2wtp3(x) dx T =  0 (8b) 
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where va 3 and wa 6 are the second and third virial 
coefficients of unit interaction. In the case of a dense 
layer, ~o(x)=const, AFco, c in equation (1) becomes a 
constant and does not affect the result of the minimization 
of AF. 

Consequently, the free energy determined by equations 
(1)-(8) is a functional of the functions Ei(x, x') and gi(x') 
(i = 1, 2) and contains in the general case the values of H,  
and H2 as the unknown parameters. The minimization of 
this functional taking into account additional conditions: 

fo '" dx -N~ i = 1 , 2  (9) 
El(x, x') 

and 

tr fo~' a- ~ ~o~(x) dx = qiNi i=  1, 2 (10) 

or, in the case of a layer of constant density: 

qKx)=qh(x)+q~2(x)=const O<~x<<.H2 (11) 

determines the equilibrium characteristics of a planar 
layer of bidisperse chains. 

In order to solve this problem, the Lagrangian method 
of indefinite multipliers will be used. Then the variation 
of the functional for the four unknown functions E~(x, x') 
and g~(x') (i = 1, 2) leads to Euler's system of equations. 
The structure of the equations and the scheme for their 
solution are considered in the Appendix. Here only the 
main results will be discussed. 

RESULTS 

Functions of local chain stretching 
Analysis shows that in all the cases considered here 

the functions of local stretching of short and long chains 
are described by general equations: 

, /'C E,(x, x )=~7 (x'2-x2) '12 

( - -  
E2(x, ~')= t~_  N~ 

[u~(x')- x2] '/~ 

I ~ [u~(x')-"~(x)]il2 

where 

x<<.x' <<.H i (12) 

x<~H a <~x' <~H 2 

Hi <~x<~x' <~H2 

(13) 

U(X) ---- 1 - - ~  {X --  ~t[X 2 --  (1 --  ~t2)H 2] ,/2} (14) 

It can be seen from equation (12) that the function of 
local stretching of short chains at x, x '<  Hi is independent 
of ~ and q, and, hence, of the existence of long chains 
in the layer, i.e. 

Ea(x, x')=Eao(X, x') x, x'<...H a (15) 

where E,o(X, x') is the function of local chain stretching 
in a monodisperse layer containing only chains of length 
N, (qa = 1, q2 =0, subscript '0'). Hence, it is advisable to 
consider the layers of monodisperse chains as initial 
layers. 

Layers of monodisperse chains 
The theory of these layers under different thermo- 

of polydisperse block copolymers. 1: T. M. Birshtein et al. 

dynamic conditions has been developed in refs. 24, 26 
and 27. The analysis of results obtained in these papers 
has shown that the characteristics of free layers in a good 
or a O-solvent and those of a layer with a constant density 
may be described by universal relationships. In the 
limiting cases of an athermal (~ = 1) and a O-solvent 
(z = 0) and a strong precipitant leading to layer compact- 
ization and the levelling-off of its density (r<0,  q~(x)~ 
const), the solvent quality is contained in these equations 
via the exponent v of the molecular-weight dependence 
of the size of free (ungrafted) chains under the corre- 
sponding thermodynamic conditions R ~ N v. In this case 
we have v=3/5 and 1/2 for a good and a O-solvent, 
respectively, and the layer of constant density corresponds 
to the condition of the precipitant (globular state) with 
v = 1/3. 

Universal equations for the distribution functions of 
chain ends 9,o(Z) and of concentration profiles ~01o(Z) in 
a layer of chains of length N1 grafted at a density 1/a 
have the form24: 

9,o(Z)= 2(flo + 1)z(1 - z2) ~" (16) 

~ IO(Z) = q~]%)(1 - -Z2)  fie' (17) 

Here z =x/H,o  is the relative coordinate along the layer 
height. 

The limiting layer height is: 

f ~ - P -  
n,o=am, t f .  (,8) 

and 4o~'~ ) is the maximum (at z=0)  unit concentration in 
the layer: 

@(~ = K~, Nxa3 (19) 
anlo 

(The theory does not consider the decrease in concen- 
tration in the near-surface layer of thickness ~ aa/z.) 

The free energy of the layer (per unit volume) is given 
by: 

f o- "~-ll,, AFIo:NItKF a2) (20) 

The values of exponents and numerical coefficients in 
equations (16)-(20) are summarized in Table 1. It should 
be noted that, in the case of a layer with a constant 
density q~(x)-=tp, the value of AFao in Table 1 does 
not contain the contribution of volume interactions, 
AFco, c "~ N = const. 

Layers of bidisperse chains 
Let us now return to the case of a layer formed by a 

mixture of chains of lengths N, and N 2 = N 1(1 + e) (their 
fractions are ql and q2) with the average grafting density 
1/a. Its characteristics will be compared to those of a 
monodisperse layer consisting of chains of length N 1 
(q, = 1 and q2 = 0) with the same grafting density, i.e. the 
change in the structure and characteristics of the layer 
when the length of the part q2 of the chains increases 
from N 1 to N 2 will be considered. 

As already mentioned (equation (15)), this increase in 
length does not affect the function of local stretching of 
short chains. Moreover, as follows from the Appendix, 
this increase does not affect the distribution function of 
short-chain ends so that in the range of the existence of 
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Table 1 Exponents and numerical coefficients in equations (16)-(20) 

Values of 
Expressions v = 3/5 v = 1/2 v = 1/3 

2 v -  1 
fl, = 1/2 0 - 1/2 

1 - v  
1 - v  

f t .  . . . .  1/3 1/2 1 
2v 

3v-1 
fl, = 1 1/2 0 

2(1 - v )  

1 
& = - 5/3 2 3 

V 

[4(wq.q 
r ,  ~ vp L~ \ T /  J 

i-9 B(wy,q-,,, 
2 r(1/(I -v))  

3/2 4/re 1 
~-~ F((1 + v)/(2- 2v)) 

this function at z ~< H z/H 1 o = h i we have: 

gl(Z)=glo(Z) (21) 

where glo(Z) is determined by equation (16) and Table I 
and z is, as before, a coordinate normal to the surface 
referred to the limiting height of the initial monodisperse 
layer Hxo (equation (18)). Equations (16)and (21)and 
the normalization conditions make it possible to deter- 
mine the dependence of the relative height hi of short 
chains on the composition in the bidisperse layer for 
which we have: 

Hi  
ha -Hlo- (i _q~/O +#,))z/2 = (I -- q~#u)x/2 (22) 

The density profile of units in the range of values 
0 ~< z ~< ha also remains invariable: 

q~(z)=qh(z)+~o2(z)=qho(Z ) z<~h x (23) 

where tp~o is given by equations (17) and (19) and Table 1. 
It can be seen from the Appendix that in the range z < hi 
the partial values of qh(z) and ~o2(z ) are also retained. 
For a monodisperse layer, these values have the sense of 
contributions to the total concentration of chains ending 
before and after the height ha. 

In the range h~ <~ z <~ H2/H~ o = h2 in which the ends of 
long chains are located (H2 is the limiting layer height), 
the structure of distribution functions changes. It follows 
from the Appendix that: 

~O(Z)=tp2(Z)=qg(ln~)[1--U2(Z)']#* h2>~z>~h 1 (24) 

where 
z-- ~t[z 2 -- (1 -- ~2)h 2] 1/2 _ z 2 + h2~t2 

u(z) = 1 -- ct 2 z + ~[z 2 - (1 -- ~2)h2] I/2 

(25) 

It is clear that in this exfernal part of the layer its 
characteristics depend on the length and content of long 
chains. At z=hz, U(hl)=hl and the values of q~(z) in 
equations (23) and (24) coincide. 

The distribution function of long-chain ends is given 
by: 

g2(z)=2(flo+ l)[1-u2(z)]#'u(z) d ~  ) h2>~z>~h I (26) 

where the values of exponents fig are given in Table I. 
The total height and the free energy of the layer are 

given by: 
i" 

H2 - (1 + aq{.) (27) 
h2 - H 1 0  

AF = AF1 o(1 + q#2 r) (28) 

where the values of exponents are also given in Table I. 
It can be seen that at z = h 2 ,  u ( z ) =  1, SO that ~ ( h 2 ) =  
g 2 ( h 2 ) - 0 .  These results will be discussed together with 
those for deformed layers. 

Deformed layers of monodisperse chains 
Let us consider, as in ref. 15, the deformation of 

monodisperse layers immersed in a solvent under con- 
ditions when the limiting layer height is restricted by the 
value H ] o < H l o ,  i.e. the layer is compressed compared 
to its size in the free state, llo=H'~o/Hxo<~l. It will 
be assumed that the chains of the layer also remain 
extended under the conditions of deformation, i.e. 
H'~o>aN~. Since the calculations are very cumber- 
some, only the case of a layer in a good solvent will be 
considered here and below. It follows from the results in 
ref. 15 (see also ref. 29) that the layer deformation 
considered here leads to an increase in unit concentration 
along the entire layer height by a constant term: 

=  Olo(Z) + 1  la0 ~Oxo(Z ) dz 
1 o  

(m) 2 1 2 2 = (Oio [~(I/11o) + ~11o- z ] (29) 

(here and below z is still referred to the unperturbed 
height of the layer). 

The distribution function of chain ends also increases 
along the entire layer height, the change being a 
maximum on the layer periphery. For the case of a layer 
in a good solvent (v = 3/5), the distribution function of 
chain ends in a deformed layer is given by: 

1 z 1 
gIlo(Z)=ZI3(120--Z2)1/2+(G--I10)-(I20 ~Z2)1/21 (30) 

The free energy of the deformed layer is described by the 
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equation: 
__ 5 2 15 AFxo-AFloX~(1/lxo+llo-311o ) (31) 

according to which d(AF'lo)/dllo = d2(AF'lo)/dl2 o -- 0 and 
da(AF'~o)/dlaxo <0 at 11o = 1. (It should be borne in mind 
that this equation refers to the case of layer compression 
l~o ~ 1 with the retention of extension of all chains.) The 
summand of the order of 12o (and also that of the order 
of l~o with the minus sign) in parentheses on the 
right-hand side of equation (31) is related to a decrease 
in the free energy of chain stretching with layer defor- 
mation and the summand of the order of 1/11o (and also 
that of the order of l~o with the plus sign) determine the 
increase in the energy of volume interactions due to 
increasing unit concentration in a deformed layer. 

Deformed layers of bidisperse chains 
Let us now consider a layer of bidisperse chains of 

length N~ and N2=NI(1 +¢) in a good solvent and fix 
its limiting height H i ~<H 2 (l 2 =H'2/H 2 <<. 1). As in the 
preceding section, only the case of a layer in a good 
solvent will be considered, and it will be assumed as 
before that the chains of the layer remain extended 
even under the conditions of deformation. It can be seen 
from the preceding section that the deformation of a layer 
of monodisperse chains leads to its compression as a 
whole: layer concentration increases by a constant value 
throughout the layer height, equation (29). 

It can be seen from the Appendix that this relationship 
holds for a layer of bidisperse chains: 

l fh '~  - -  ~0(z) d z  (32)  q~'(z) = q~(z) + hl 

where z is, as before, the coordinate normal to the surface 
referred to the unperturbed height of the layer of 
monodisperse chains (z=x/Hlo), hi=H'2/Hlo and the 
values with and without superscripts refer to the deformed 
and the free layer, respectively. By using for ~o(z) 
equations (23) and (29), we obtain: 

~'(z)  = q~i(z) + ~oi(z) 

(q~tz"~)[2(1/u(h'2)) + ½u2 (hl) - z 2] z < h'z 
(33) 

~pt~o)[2(1/u(h'2))+½u2(hi)-u2(z)] h'~ <~z<~h'2 

where h'~=H'~/H~o and H'~ are the relative and the 
absolute values of height of a short-chain layer, these 
values being smaller than the corresponding values for 
a free layer. 

The value of hi is found from the normalization 
condition: 

a/a 3 ff'~ qYl(z) dz=qxN1 

where the expression for tp'l (z) is given in the Appendix. 
Comparison of equations (33) and (29) shows that in 

the range 0 ~< z ~< hi the unit density profile of a layer of 
bidisperse chains compressed along the height h i coincides 
with that of a monodisperse layer compressed up to a 
height 11o = H'~o/Hxo = u(h'2). 

The distribution function of short-chain ends in the 
range of its existence 0 ~< z ~< h i also coincides with that 
of the ends of chains of a monodisperse layer compressed 

to the value llo=u(h'2): 

g'l (Z ) = z[ 3[u2(hi ) -  Z 2 ] 1/2 

1 
1 Z2.] 1/21 (34) +(u(h'2) -u2(h'2)) [u2(hl)_ 

(cf. equation (30)). 
The distribution function of long-chain ends is given 

by 

g'2(z) = [3[u2(hl)-  U2(Z) ] 1/2 

1 
+(u(hi)_u2(hi) ) 1 1/21U(Z) - [u2(hl)- u2(z)] 

du(z) 

dz 

(35) 

The free energy of the deformed layer is described 
by the equations: 

AF'= AF 1 o x ¼{ - ½[uS(hl) + ~(u2(hl)- (hl)2) 5/2] + A2u(hl) 

+ ~(A - hiZ)2[u2(h'z)- (hl) 2] 1/2} (36) 

where 

A = ½12/u(h'2) + u2(h~)] (37) 

DISCUSSION 

Two parts of a layer of bidisperse chains 
The above analysis shows that in all the cases 

considered here, for grafted layers formed by a mixture 
of chains with degrees of polymerization N1 and N 2 > Nx, 
two parts of the layer may be distinguished. The inner 
part is a region in which the ends of all short chains are 
distributed, whereas all long chains are tie chains. Short 
chains do not penetrate into the outer part of the layer, 
in which the ends of long chains are distributed. The 
structure of the inner part of the layer depends neither 
on the length nor the content of long chains (at a fixed 
total grafting density). Its characteristics, i.e. density 
profile, the mean degree of chain extension in a given 
layer section and distribution functions of short-chain 
ends, retain all the relationships obtained for the initial 
layer ofmonodisperse chains. In other words, the increase 
in the length of a part of the chains does not affect the 
structure of the inner part of the layer for which the 
chains of increased length are tie chains. This gives a 
simple relationship for describing the position of the 
boundary between the inner and the outer parts of the 
layer: 

~l gl0(z) dz=ql (38) 

At this boundary, all layer characteristics undergo a 
break. Figures 2 and 3 show the density profiles and 
distribution functions of chain ends in three types of 
layers of bidisperse chains (T>> ®, T = ® and ~0(z) = const). 
In all cases the same layer composition is considered, 
ql =0.6 and q2=0.4. With increasing q2, the boundary 
between the two regions is displaced to the left according 
to the law determined by equation (22). 

It can be seen from Figure 3 that distribution functions 
of long-chain ends in the outer part of the layer are similar 
to those of ends in a monodisperse layer under the 
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equations (18) and (20) they may be written in the form: 

H2 = Ho(N1, o)+Ho(N2-N1, a/q2) (39) 

AF = AFo(N1, a) + AFo(N 2 - N1, ¢r/q2) (40) 

where each addend corresponds to the characteristics of 
layers of monodisperse chains (subscript '0'), the first 
addend corresponding to a layer of chains of length N1 
with an area per chain a and the second addend to a 
layer of chains of length N2 - Nt with a larger area a/q2. 

This property of overall characteristics of layers of 
bidisperse chains reflects the general property of additivity 
of these characteristics. In fact, for a layer of mono- 
disperse chains, its height and free energy are proportional 
to chain length N. This relationship valid at any layer 
structure leads to equality of the layer height and free 
energy to the sum of the corresponding characteristics 
of sublayers formed by cutting the chains into parts 
(N=~i ni) and forming new layers by each part: 

Ho(N,a)=Na(KH~2)-#n=~i nia(Kn~2)-#x 

=~ hi(n i, a) (41) 
i 

1 

01 

Figure 2 

~ = 0  
ft.= ~.6 

ct= . 0  

~t=l .5 

¢ ~- c o n s t  

z 

2 

Density profiles of units in a layer of bidisperse chains 

corresponding conditions. However, the analytical ex- 
pressions differ, so that only a similarity but not complete 
coincidence is meant (see Figure 4). This difference is due 
to the fact that the outer part of the layer, which may 
be treated as a layer of chains grafted at a density q2/a, 
is a layer of polydisperse chains. With increasing ~, the 
degree of polydispersity of chains of the outer layer 
decreases, and its characteristics become similar to those 
of a monodisperse layer of chains of length ~N1. 

The conclusion about the maintenance of the structure 
of the inner part of the layer when part of the chains 
becomes longer also refers to the case of deformed layers. 
As already shown, each degree of deformation (com- 
pression) of a layer of bidisperse chains may be related to 
such a degree of deformation of the initial monodisperse 
layer that the character of deformation of inner regions 
of these layers becomes completely equivalent. This is 
shown in Figure 5. 

Additivity of characteristics of a layer as a whole 
In the preceding section, the structure of a layer of 

bidisperse chains has been considered in detail. Now the 
overall characteristics of the layer will be considered: the 
complete layer height H 2 and the free energy of the layer 
AF. As has been shown in equations (27) and (28), these 
characteristics are the sum of two terms. Applying 
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Figure  3 Di s t r ibu t ion  funct ion of ends  of shor t  and  long  chains  in a 
layer  of b id isperse  chains  
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Figure 4 Distribution functions of the ends of long chains under the 
conditions of good solvent for the following values of the parameters: 
(a) q2 =0.4, ct=0.6 (A), 1.5 (B), 9.0 (C), ~ (D); and (b) ~ = 1, q2 =0.80 
(A), 0.95 (B), 0.99 (C), 1.00 (D) 

AF(N, ~r)= ~ AF(ni, a) (42) 
i 

Figure 6 shows the density profile of the initial layer 
and the density profiles of successive sublayers of the 
same total height and with the same free energy. Note 
that the additivity of characteristics follows precisely from 
their proportionality N and, hence, is obeyed in terms 
of the order of N. The next terms that are not considered 
in this approximation (e.g. the term of the order of N O 
related to the loss in free energy of chain parts near the 
matrix) are not additive. 

Equations (39) and (40) are a direct extension of the 
additivity property to the case of layers of chains of any 
polydispersity. Thus, for layers formed by a mixture of 
chains of lengths N1, N2 . . . . .  Nm in the ratio q 1, q2 . . . . .  qm 
at an average grafting density lfir per chain, we have: 

f ,. \tin / a ~ -  tin 
H=a ,=,~ (Ni -Ni_ i ) t~ iqk)  tKn~,,#_ (43) 

/ " "Xtir/ ~'~-tir 
A F = i = I  ~ (Ni--Ni-1)tk~=iqk) tKFa2/l_ (44) 

1: T. M. Birshtein et al. 

where ~ =  1 qi = 1. On passing to a continuous distribution 
q(n) we have: 

H =a|K. ~l I I q(n) dn)ti" 
\ a / LJ N~i. 

(45) 

Ae = (K tiN(f;" q(n) dn)ti" + N=,.] 
aV LJN.,,. 

(46) 

where the constants K and exponents fl are presented in 
Table 1 and [~m=x q(n) dn = 1. For the special cases of the 
athermal solve~"(flx = 1, fir = 5/3) and the melt (fin = 1/3, 
f i r=3)  the relationships (45) and (46) coincide with 
similar relationships of ref. 28. Note that an interesting 
sequence of equations (45) and (46) is the fact that the 
characteristics of the layer are not simple functions of 
the usual Mw/Mn ratio but, rather, depend on the entire 
structure of the distribution function q(n). 

Thermodynamic advantage of chain polydispersity 
in layers 

A chain layer is, in a certain sense, a structurized 
system. Hence, it may seem at first sight that the most 
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Figure 5 (a) Density profiles of units in (A) a free and (B) a compressed 
layer of bidisperse chains in a good solvent, ct = 1. Broken curves show 
the density profiles of a free and a compressed monolayer in a good 
solvent. (b) Distribution functions of ends of short and long chains in 
(A) a free and (B) a compressed layer of bidisperse chains in a good 
solvent, • = 1. Broken curves show the distribution functions of chain 
ends in a free and a compressed monolayer in a good solvent 
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Figure 6 (a) Density profile of the initial monolayer. (b) Density 
profiles of sequences of sublayers 

stable system is that in the case of monodisperse chains. 
However, it follows from the results that, in contrast, it 
is a mixture of chains of different lengths in layers that 
is the most thermodynamically stable system. Moreover, 
this advantage is in no way related to the small (for 
polymers) contribution of trivial translational entropy of 
mixing. 

For the sake of simplicity, the free energies of a layer 
formed by a mixture of bidisperse chains and those of 
layers of monodisperse chains formed in the case of 
segregation of chains of different lengths will be compared 
(Figure 7). The free energy of a bidisperse layer (per unit 
area) is determined by equation (28), where the values 
of f l r=l /v>l  are given in Table I, and AFlo is 
determined from equation (20). (It should be borne in 
mind that this dependence is plotted from equation (1) 
and does not contain the small contribution of the 
translational entropy of chain mixing independent of N.) 
For the free energy of the layer per unit surface, in the 
case of the segregation of chains of different lengths, we 
have: 

a 2 

(47) 

where tr I and tr 2 are the grafting areas per chain in 

segregated layers consisting of chains of lengths N1 and 
N 2. In ref. 28, comparison of equations (28) and (47) was 
carried out under the condition al = a2 = a. It has been 
shown for this case that AFs > AFo. The expression AF, 
in equation (47) may be additionally minimized under 
the condition of fixation of only the mean areas per chain: 

a=qxal + q2tr2 (48) 

The minimization of AF~ (equation (47)) for at and a2 
with the application of equation (48) gives: 

1 
G I ---~G 

ql +q2( 1 +~x)v 

(1 + ~t) v (49) 
G2--0" 

qx +q2( 1 +ct)v 

and 

AFs = AFlo[ql + q2( 1 + g)v] 1/, (50) 

so that A F s - A F > 0 ,  which shows the thermodynamic 
advantage of mixing at any chain length and mixture 
composition (see also ref. 28). 

a 

b 
Figure 7 Two possible states of a planar layer: (a) layer with mixed 
short and long chains and (b) layer with segregated short and long 
chains 
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The origin of this effect is fairly clear. In segregation, 
both long and short chains should be relatively densely 
grafted onto the matrix. In a mixed layer, this density 
exists only in the inner part of the layer, whereas in its 
outer part the mean grafting density per chain is not tr 
but tr/q 2. Hence, the free energy of outer parts of long 
chains decreases considerably. Moreover, in all cases 
elastic contributions to AF decrease, and for layers in 
a good or a 19 solvent, the contributions of volume 
interactions also decrease. 

Degree of segregation of chain ends 
The theory of a layer of bidisperse chains developed 

in the present paper is based on the concept of the 
segregation of ends of short and long chains. The free 
ends of shorter chains are concentrated in the inner part 
of the layer adjoining the grafting plane, whereas those of 
longer chains are located in the outer peripheral part 
of the layer. This situation corresponds to the minimum 
of free energy (equation (1)), i.e. to the most probable 
state of the system. Thermal fluctuations in the system 
will lead to deviations from the most probable state 
leading, in particular, to partial mixing of ends of short 
and long chains. It is clear that the concept of segregation 
of ends is valid only when the width of the region of 
fluctuation mixing of ends is much smaller than the 
characteristic size of the layer of bidisperse chains. Let 
us evaluate the width of this region located near the 
boundary of the inner part of the layer of height H~ 
containing short chains. 

As already mentioned, this problem is completely 
equivalent to that of the determination of the width of 
the mixing region of ends of opposite monodisperse 
grafted layers considered in ref. 10. According to ref. 10, 
the molecular field U(x)= 6f(x)/6q)(x) will be considered. 
Here f(x) is the density of free energy of volume 
interactions (see 'Theory' section) affecting the chain 
units. Applying the results in the Appendix we obtain: 

I 3rc2 
const 8a2pN~ x 2, x < H~ 

U(x) = ~const 3~Z2 
8aEpS 2 u2(x), x > H  1 

(51) 

We will find the increase in the free energy 6FI of a 
short chain (in the 'outer' molecular field) when its free 
end arrives at a point x '=  H~ + Ax. If 6n is the number 
of units in the end part located in the range Ax, then: 

6F 1 ~-~n AU (52) 

where A U is the characteristic value of the excessive field: 

3re 2 
AU(x) = 8a2pN~ [-U2(X) - -  X 2"] 

in the scale Ax. Taking into account equations (51) and 
assuming that Ax/H~ << 1 we obtain: 

A U -  H~ A x (53) 
N2pa 2 

Since on small scales the parts of grafted chains are 
not stretched, the relationship between 6n and Ax is 
determined by Gaussian statistics: 

Ax 2 = pa 2 6n (54) 

and from the evident condition 6F~ ~-1 we find the 

characteristic width of the region of fluctuation mixing 
of free ends of short and long chains: 

Ax~- Rm 

Here Ro~=apl/ZNl/2 is the Gaussian dimension of a 
short chain, and numerical coefficients of the order of 
unity have been omitted in the derivation of equation 
(55) for the sake of simplicity. 

Hence, the condition of segregation of free ends of 
short and long chains is valid if two inequalities are 
simultaneously fulfilled: 

Ax<<Ha, Ax<<H2-H1 (56) 

where the dependence of H1 on the mixture composition 
is determined by equation (55). It can be easily shown 
by using equation (55) that the stretching of short chains 
with respect to the Gaussian size, R~/H~ << 1, ensures the 
fulfilment of the first inequality (56): 

H1 \H1,/ 

In conclusion of this section it will be mentioned that, 
as can be seen from equation (55), the width of the range 
of overlapping of Ax is of the order of magnitude 
Ax,~ Ni/6, whereas the height of the inner part of the 
layer is H1 ~ N1. Hence, the picture of non-overlapping 
distribution functions of chain ends is valid in terms ~ N. 
The theory developed here and based on the assumption 
of chain-end segregation gives a slightly excessive value 
of the complete free energy of the system, however not 
in the main terms proportional to N. If the effect of 
mixing of chain ends is taken into account with the 
fulfilment of conditions (56), this cannot affect the main 
conclusions of the paper, in particular, the conclusion of 
the thermodynamic advantage of mixing of chains of 
different lengths in the layers. 

CONCLUSIONS 

In the present paper, the mean-field theory describing 
the detailed structure and properties of planar grafted 
layers formed by the chains of two molecular weights N 1 
and N 2 is developed. Several conclusions on the structure 
and properties of grafted layers with arbitrary character 
of polydispersity of molecular weight were also drawn. 

As already mentioned in the 'Introduction', the analysis 
of the conformational properties of grafted layers is the 
basis for considering a wide range of structural problems 
in solutions and melts of block copolymers. The aim of 
the papers in this series is the investigation of equilibrium 
characteristics of supermolecular structures formed in 
mixtures of block copolymers of different molecular 
weights, compositions and block number in both the 
presence and the absence of solvent. This consideration 
will be based on the concepts and results obtained in the 
present paper. In the next paper in this series, the simplest 
case of a mixture of diblock copolymers of different 
molecular weights and compositions forming a lamellar 
mesophase will be considered. In the following papers, 
the structure of lamellar mesophases formed by triblock 
copolymers of the ABA type and by mixtures of di- and 
triblock copolymers will be investigated and, subse- 
quently, supermolecular structures of other morphologies 
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(cylinders and spheres) and transitions between them will 
be analysed. 
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APPENDIX 1 
Minimization of the free-energy functional 

The problem of finding a conventional extremum of 
the functional (1)-(8) with additional conditions (9)-(10) 
reduces to solving Euler's equations: 

3 2~(x') g~(x') 
- -  gi(x') ['~(~0 (X')) "[- ~'2 + i] = 0 2pa 2 E~(x, x') E~(x, x') 

(AI.1) 

fo:' { 2pa2 ix ' )  [#(q~(x))+22+'] } dx E,(x, x')-~ ~ -  E , ( x ~  =0 

(A1.2) 
where 

#(q~(x))= 6.[" = 2vq~(x)+ 3wq92(x ) (A1.3) 
&o(x) 

is the chemical potential and 2~(x'), )-2+i (i=1,2) 
are indefinite Lagrangian multipliers. Introducing the 
designations: 

2pa 2 2i(x ' )  = ~/~)(x'), 

3 g~(x') 

2pa 2 (A1.4) 

,p(x) = 

where 

- -  [ u ( ~ o ( x ) )  + , z 2  + , ]  - - ¢~}(x) 
3 

it is possible to rewrite equations (A1.1) in the form: 

Ei(x, x') = E~k~'(x')- ~)(x)] 1/2 (A1.5) 

Since the chain is not extended at the free end 
(Ei(x, x')=O, i= 1, 2), it follows that ~b]°=~k~)=~k °) and 
the functions E~(x, x') should be given by: 

Ei(x, x') = [~Ot°(x')- ~k")(x)] 1/2 (A1.6) 

The substitution of equation (A1.6) into equation (9), 
i= 1, gives an integral equation for the function q~m(x). 
The solution of this equation is given by: 

7[ 2 
= - -  x 2 (A1.7) d/m(x) 4N 2 

The substitution of this equation into equation (A1.6) 
gives: 

, 7[ X2)1/2 El(X, x ) = ~  (x ' 2 -  (A1.8) 

Further calculations depend on whether the case of a 
good or a ® solvent is considered, i.e. on whether only 
the first (at v>>w(o >0) or the second (at v~~<<w~0) term 
is retained in equation (A1.3) for the chemical potential. 
Let us deal in greater detail with all calculations for the 
case of a good solvent. 

The density profile of units in a layer (o(x) may be 
found from equation (A1.4), i= 1, taking into account 
equation (A1.7): 

37[ 2 
x 2+A l, x<H1 (A1.9) 

16vpaZN 2 

A 1 = -)~3/(2v) 

Now the substitution of equation (A1.9) for (0(x) into 
equation (A1.4), i=2,  gives the type of function @~2)(x) 
at x<H~: 

7[2 X 2 
~/(2)(X) = ~ X A3, x < H  1 (AI .10)  

4 N ~  

where 

A 3 = ~ p a 2 ( ~ . 3 -  ~4) 

The substitution of equations (A1.6) and (AI.10) into 
equation (9), i=2, gives an integral equation for the 
function qJ~E)(x) at x > H1. The solution of this equation 
is given by: 

7[2 1 
~kt2)(x) = 4N~ (1 -- a2) 2 {x-- aEx 2 - (1 - o~2)H~] I/2} 2 

7[2 
-4N12 u2(x), x>H 1 (AI.ll) 

The final expressions for the function Ez(x, x') and 
~0(x) with the aid of the known function u(x) are written 
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in the following form: 

E2(X , X'} = ~ ~[U2(Xt)-- X2] 1]2, 
" 2N 1 [[u2(x')-u2(x)]l/2, 

3~z 2 
qg(X) = 16va2pN2 u2(x) + A2, 

where 

x<H1 
(Al.12) 

x>H~ 

x > H  1 (Al.13) 

A 2 = - ).4/(2v) 

and (Al.12) taking into account 
(A1.7) and (AI.ll) also satisfy 

Equations (A1.8) 
expressions (A1.4), 
equations (A1.2). 

The condition of continuity of tp(x) at the point H1 
and equation (A1.11) yield the equality A~=A2, and 
equations (A1.9) and (A1.13) rearrange to give: 

3/r 2 ~ A - x  2, x<H1 
tp(x) = 16vpa2N2 [ A - u 2 ( x ) ,  x>H1 

(Al.14) 

The constant A in equation (Al.14) may be found from 
the fact that q~(x) becomes zero at the end of the layer, 
i.e. q~(x = H E ) = 0 ,  and the expression for ~0(x) becomes: 

= ~  (0(1%)(1 - ; 2 ) '  z < h l = H 1 / H l °  (Al.15) 
tp(Z) ~ Opting)i_ 1 __ U2 (Z)] ' z > h l  

where z=X/Hlo is the coordinate normal to the surface 
referred to the limiting value of the monodisperse layer. 

Taking into account that at x > H1 we have qKx) = q~2(x) 
the expressions (Al.15) and (Al.12) for functions q~(x) 
and E2(x, x') will be substituted into equation (5), x > Hi, 
and an integral equation for the function 92(x') will be 
obtained. 

The solution of this equation is given by: 

02(2) = 311 --U2(Z)-]I/2U(Z) du(z)  (Al.16) 
dz 

Substitution of this equation into equation (5), x < H t, 
and the application of equation (Al.12) to the function 
E2(x, x') give the form of the density profile of short and 
long chains. In the coordinates z = X/Hlo these functions 
have the following form: 

tp l (Z ) = tp(mo) ! [ (h2 - z2)i/2 ( 1 -  h2) U2 

/h  2 _ .2"~1/2-] 
+0-z2)arctan/' i--i | l, z>hl (A1.17) 

\ l - h i /  J 

q)2(z)=~tp(z)-qh(z), z <hl (Al.18) 
l ip(Z),  Z > h 1 

where ~otl% ) is the maximum concentration of units in a 
monolayer described by equation (19). 

In order to calculate distribution functions of short- 
chain ends g~(z'), it is possible to use equation (4), 
substituting into it equations (A1.8) and (A.17) for 
El(x,x') and qh(x) and regarding it as an integral 
equation for g~(x'). 

The solution of this equation is given by: 

9t(z) = 3z(1 --Z2) 1/2 = glo(Z) (Al.19) 

where z=X/Hlo; 91o(Z) is the distribution function of 
chain ends in a monolayer. 

Two conditions will be used for the determination of 
the values of ha = H1/Hlo and h2 = H2/Hio (and, hence, 

1: T. M. Birshtein et al. 

for the total layer height H 2 and the height of a 
short-chain layer Ht): equation (10) and the condition 
of normalization of the function 92(z) (equation (7)). The 
final expressions have the following form: 

hi =Hl/Hto=(1 __q2/3)1/2 (A1.20) 

h 2 =HE/Hto  = 1 ÷ctq~/3 (A1.21) 

where q2 is the fraction of long chains, ct = (N 2 - N 1 ) / N  l, 
HI is the height of a short-chain layer, H 2 is the total 
height of a bidisperse layer and Hlo is the height of a 
monodisperse layer. 

The free energy of the bidisperse layer (per unit area) 
may be found from equation (1) and is given by: 

AF = AFlo(1 + q5/3) (A1.22) 

where AFt o is the free energy of the monodisperse layer. 
In the case of a ® solvent with #(q~(x))= 3wtp2(x) all 

calculations are completely analogous to those reported 
above. In addition to the results presented in the text, 
only the density profiles of units of short and long chains 
will be given: 

(ol(z)=(o~mo)(h2-z2) 1/2, z <hl (A1.23) 

, ,  [tp(z)--qgi(z), z<hl (A1.24) 
q)2tZ J = 1(O(Z), Z > h 1 

In the case of layers that do not contain the solvent 
(q~=const), the value of AFco,c in equation (1) becomes 
a constant and does not affect the result of minimization 
of AF. However, additional condition (11) is used. 

The main results obtained in this case are presented 
in the text. Here only the density profiles of units of short 
and long chains will be reported: 

1 +1  a rcs in( ! -2h~ +z2 ~ tC2(z) = ~ i ~ z~  -], z<h~ (A1.25) 

q)i(z)=q~(z)-tp2(z), z <hl (A1.26) 

APPENDIX 2 

Structure of a deformed bidisperse layer 
In this Appendix, the deformation of a planar layer 

consisting of chains of two lengths, N1 and N 2 = Nl(1 + 00, 
and immersed in a good solvent will be considered in 
detail. This deformation reduces to layer compression to 
a certain height H i < H  2. The general formalism for a 
deformed polydisperse layer was considered in ref. 28. 

In this case equations (1)-(8) for the free energy with 
additional conditions (9) and (10) remain valid, and the 
structure of Euler's equations does not change. Hence, 
the expressions for the functions of local stretching 
El(x, x') and EE(X , x ' ) ,  (A1.8) and (A1.12), and equation 
(A1.14) for unit density profile in a layer obtained in 
Appendix 1 also remain valid. 

As before, equations (4) and (5) in combination with 
equations (A1.8) and (A1.12) for the functions El(x, x') 
and EE(X , x ' )  make it possible to find the unknown 
characteristics of the compressed layer, which in the 
relative coordinates z = x/Hlo are given by the following. 

Distribution function of long-chain ends: 

~[A-u2(h~)] "~ , , du(z) 
92(z)= 3[u2(h'2)-u2(z)]l/2-~ ~ lutz; 

[u2(h2)_ u2(z)] 1/2] dz 

(A2.1) 
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Density profile of long- and short-chain units: 

q~2(z)=q~(z)-(ot(z), z <h'l (A2.2) 

qh (z) = qg(l~O) ! [ { (h'12 - z2)[u2(h'2)- h'12] ) a/2 

/ /a'2 e,2 x~ 1/2-1 
+ ( A _ z  2) -1 - ~  arctan[ 27~.,---,2| [ (A2.3) 

\u  (h2)-h 1,] J 

Distribution function of short-chain ends: 

91(z)=z(3[u2(h,2)_z211/2 3[A~,  u2(h~)] "~ -t [ ~ i j  (A2.4) 

where q~]~) is the maximum concentration of units of the 
unperturbed monodisperse layer. 

The unknown values hi = H'l/Hlo and A may be found 
by using equations (7) and (10). Bearing in mind equation 
(25) for u(z) we obtain the equation for the value of A: 

A = ½[2/u(hi) + u2(hl)] (A2.5) 

and the equation with respect to the value of ~ that will 

be determined as follows ~ = [-hi 2 - ( 1 -  ~2)h~2] 1/2, where 
hi=H'2/Hlo is the given height of the bidisperse layer 
and h'~=H'~/Hlo is the unknown height of a short- 
chain layer referred to the unperturbed height of the 
monodisperse layer: 

(6¢ -- h l ) (h l  2 - ~2)(~ _ ehl) 

= (1-~2)21-(~+q2)h i + (1 +¢q2)~] (A2.6) 

Solving equation (A2.6) numerically for the variable 
4, it is possible to find the value of h~ for any given values 
of  0~, q2 and hl. 

The free energy of a bidisperse layer compressed to the 
height H i is written with the aid of the values of A and 
u(hi) determined by equations (A2.5) and (25) and is 
given by: 

AF = Aflo x ¼{ - ½[uS(hl) + ~(u2 (hl) - hi2) 5/2] 

+ A2u(hl) + ~(A - h'22)2[u2(hi) - h~ 2] 1/2} (A2.7) 

where AFlo is the free energy of an unperturbed 
monodisperse layer. 
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